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The places of model checking in applied Bayesian statistics

• Once we have accomplished constructing a probability model
and computing the posterior distribution of all estimands,
We should assess the fit of the model to the data and to out
substantive knowledge.
　

• It is difficult to include in a probability distribution all of one’s
knowledge about a problem
So it is wise to investigate what aspects of reality are not
captured by the model
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Sensitivity analysis and model improvment

• The sensitivty analysis:
How much do posterior inferences changes when other
reasonable probability models are used in place of the present
model? 　

• In theory, both model checking and sensitivity analysis can be
incorporated into the usual prior-to-posterior analysis.
Under this perpective, model checking is done by setting up a
comprehensive joint distribution.

5



Sensitivity analysis and model improvment

• In practice, however, setting up such a super-model to include
all possibilities and all substantive knowledge is both
conceptually impossible and computationally infeasible in all
but simplest problems.
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External validation

• We can check a model by external validation using the model
to make predictions about future data, and then collecting
those data and comparing to their predictions.
　

• In this chapter and the next, we discuss methods which can
approximate external validation using the data we already have.
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Posterior predictive checking

• Our basic technique for checking the fit of a model to data is
to draw simulated values from the joint posterior predictive
distrbution of replicated data and compare these samples to
the observed data.
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Notation for replications

• y =observed data

• θ =vector of parameters

• y rep =the replicated data

• ỹ =the future observable value
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Test quantities

• Test quantity is a scalar summary of parameters and data that
is used as standard when comparing data to predictive
sumulations := T (y) or T (y , θ)

　

• The choice of test quantity requires careful consideration of the
type of inferences required for the problem being considered
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Posterior predictive p-values

pB = Pr(T (y rep, θ) ≥ T (y , θ)|y)

=

∫ ∫
I(T (y rep ,θ)≥T (y ,θ))p(y

rep, θ|y)dy repdθ

=

∫ ∫
I(T (y rep ,θ)≥T (y ,θ))

p(y rep, θ, y)

p(y)
dy repdθ

=

∫ ∫
I(T (y rep ,θ)≥T (y ,θ))

p(y rep, θ, y)

p(y , θ)

p(y , θ)

p(y)
dy repdθ

=

∫ ∫
I(T (y rep ,θ)≥T (y ,θ))p(y

rep|θ, y)p(θ|y)dy repdθ
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Posterior predictive p-values

p(y rep|θ, y) =
p(y rep, θ, y)

p(θ, y)

=
p(y rep, y |θ)

p(y |θ)

=
p(y rep|θ)p(y |θ)

p(y |θ)
= p(y rep|θ)

So,PB =
∫ ∫

I(T (y rep ,θ)≥T (y ,θ))p(y
rep|θ)p(θ|y)dy repdθ
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Posterior predictive checking in practice

1 Compute the posterior predictive distribution using simulation.

2 If we simulated N times from the posteiror density of θ , we
draw one y rep from the predictive distribution for each
simulated θ

3 Comparison between the realized test quantities T (y , θs) and
the predictive test quantities T (y reps , θs) , s = 1, · · ·N
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Estimated p-value

• The estimated p-value is just the proportion of these N
simulations for T (y rep, θs) ≥ T (y , θs) s = 1, · · ·N
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Example: Checking the assumption of independence in bino-
mial trials

• y1, · · · , yn ∼iid Bernoulli(p)

• p(θ|y) ∝ θ
∑

y (1− θ)n−
∑

y

• The observed data : 1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0

• Test quantity T= of switches between 0 and 1 in the sequence

• # of simuation =10000

• T(y)=3

• # of T (y rep, θs) ≥ T (y , θs) = 9838

• Estimated p-value= 0.9838
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Interpreting posterior predictive p-values

• pB = Pr(T (y rep, θ) ≥ T (y , θ)|y)
• p-value≈ 0 or 1 : model cannot be expected to capture this

aspect of the data

• p-value≈ 0.5 : model can be expected to capture this aspect
of the data
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Marginal posterior p-value

• pi = Pr(T (y repi ) ≤ T (yi )|y) , y = [y1, · · · , yn]
• If yi is scalar and continuous, a natural quantity is T (yi ) = yi ,

pi = Pr(y repi ≤ yi |y)
• For ordered discrete data, we can compute a "mid" p-value
pi = Pr(y repi < yi |y) + 1

2Pr(y
rep
i = yi |y)

• we will see different behavior than from the joint checks
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Marginal posterior p-value

• marginal posterior p-value 0 or 1
: Data is over-dispersed compared to the model
　

• marginal posterior p-value ≈ 0.5
　　 : Data is under-dispersed compared to the model
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Predictive checks with cross-validation

• pi = Pr(y repi ≤ yi |y−i ), y−i = all other data except yi
　

• We will address cross-validation in the 7 chapter
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Graphical posterior predictive checks

Example

• φ1, · · · , φ90, ψ1, · · · , ψ69 ∼ iidBeta(2, 2)
　

• The full Bayesan model fitted and yields posterior simulations
for all these parameters.
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Graphical posterior predictive checks

24



Graphical posterior predictive checks

• The histogram and prior distribution does not fit
　

• Replace the offending Beta(2, 2) prior distribution by mixture
of two beta distribution.
　

p(φj) = 0.5Beta(1, 6) + 0.5Beta(1, 1)
p(ψj) = 0.5Beta(1, 16) + 0.5Beta(1, 1)
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Graphical posterior predictive checks
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Model checking for the educational testing example

• We illustrate the ideas of this chapter with the example from
Section 5.5
　

1 Assumptions of the model
2 Comparing posterior inferneces to substantive knowledge
3 Posterior predictive checking
4 Sensitivity analysis
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Model checking for the educational testing example

• Assumption of the model
　

1 normality of the estimates yj given θj and σj ,where σj are
assumed known

2 exchangeability of the prior distribution of the θ′js
3 normality of the prior distribution of each θj given µ and τ
4 uniformity of the hyperprior distribution of (µ, τ)
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Model checking for the educational testing example

• Comparing posterior inferences
　

1 Compare the posterior distribution of effects to our knowledge
of educational testing

2 Simulate the posterior predictive distribution of a hypothetical
replication of the experiments
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Model checking for the educational testing example

• Posterior predictive checking
　

1 T1 = maxj(yi ),T2 = minj(yj),T3 = mean(yj),T4 = sd(yj)

　

2 Approximate the posterior predictive distribuiton of each
statistic by the histogram of the values from the 200
simulations of the parameters and predictive data.
　

3 Compare each distribution to the observed value of the test
quantity
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Model checking for the educational testing example
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Model checking for the educational testing example

• Sensitiy analysis
• Other reasonable models might provide just as good a fit but

lead to different conclusions
• The uniform prior distribution for τ
• The normal population distribution for the school effects
• The normal likelihood
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